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AT-space U of degree k is a (k + I)-dimensional vector space over IR (the real
line) of real-valued functions defined on a linearly ordered set, satisfying the
condition: for every nonzero u E U, Z(u), the number of distinct zeros of u and
S-(u), the number of alternations in sign of u(t) with increasing t, each do not
exceed k. It is demonstrated that given aT-space U of degree k > 0 on an arbitrary
linearly ordered set T, there is a subset T' of the real line and a nonsingular linear
map L: U --. C(T'), the set of continuous functions on T', such that the following
hold: L(U) is a T-space of degree k; for u E U, Z(u) = Z(L(u», S~(u)= S-(L(u»;
and for some order-preserving bijection €I: T -4 T', u(t) = 0 if and only if
L(u)(e(t» = O. It is also shown that a T-space on a subset Tc IR can be extended
to a T-space on the closure of T in Jinf T, sup T], provided that there are no
"interval gaps" in T. Examples show that, in general, a T-space cannot be extended
across an "interval gap" in its domain, and cannot be extended to both the infimum
and supremum of its domain. Conditions for a T-space to be Markov, and to admit
an adjoined function are derived.

1. INTRODUCTION

AT-space U of degree k (see [1]) is a (k + 1)-dimensional vector space
over IR (the real line) of real-valued functions defined on a linearly ordered
set T, satisfying the condition: for every nonzero u E U, Z(u), the number of
distinct zeros of u and S-(u), the number of alternations in sign of u(t) with
inceasing t, each do not exceed k. Any basis {u/}7=0 of a T-space is a T­
system, as classically defined in terms of the permanence of sign and
nonvanishing of the Haar determinant det(ut(t)) for all to < t l < ... < f k , and
conversely, if {ut}Lo is a T-system, then its linear span is a T-space. If U is
a T-space of degree k and u E U satisfies Z(u) = k, then u has no alter­
nations in sign without an intervening zero (which is indicated by writing
So(u)=O; see [1, (3.4)]). A sequence of points to < t. < ... < t is said to
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form a weak alternation sequence of length n for a real-valued function u
provided (-I)i-ju(ti)u(tj)~O for all i,j. S+(u) is defined to be the
supremum over all n such that there is weak alternation sequence of length n

for u. A (k + 1)-dimensional vector space V is a T-space if and only if for
each 0 =1= u E V, S+(u) ~ k ([1, (3.4»).

AT-system uO"'" Uk is called a Markov system provided that for each
i = 0, 1,..., k, uo,'''' ui is a T-system. A T-space of degree k admitting of a
Markov system is called a Markov space of degree k.

Various authors (e.g. [3-5)) have considered T-spaces of functions whose
domains are arbitrary linearly ordered sets. However, the domain of the
elements of a nontrivial T-space, it will be seen, must be order isomorphic to
a subset of IR, and hence it may as well be assumed that the domain is a
subset of IR. Furthermore, while there are a priori no conditions of continuity
on the elements of V, nonetheless the inherent T-space structure provides the
elements of V with a mutual regularity which is akin to continuity except for
multiplication of every element by a single arbitrary positive function. Hence
it will be shown that every T-space of degree greater than zero on an
arbitrary linearly ordered set is isomorphic to a T-space of continuous
functions on a subset of the real line by an isomorphism which preserves
relative positions of sign alternations and zeros. Such an isomorphism will be
called an equivalence in what follows.

Given a T-space V of functions on a subset T <;; IR, there is a continuous
monotonic m: IR -> IR such that meT) is bounded and V 0 m -I :=

{u 0 m -I Iu E V} is a T-space on meT). Hence, it may be assumed without
loss of generality in this paper that every domain T <;; IR is bounded.

Let uo(t) = sin t, ul(t) = cos t for t E ]0,11:[ = T. Then it is clear that the
two dimensional linear space V, spanned by uO' U1 is a T-space of degree 1
on T. It is easy to verify that the domain of V can be extended to include
0= inf T or n = sup T. However there is no T-space on [0, n) whose
restriction to T is V. We will show in what follows that, in general, the
domain of aT-space, T, can be extended to include one of its extreme points
if they are both not in T. Using this result we will show that any T-space on
a set that does not contain its extreme points is Markov. (This last result has
been proved independently by Zalik [6).) Prviously, this was only known for
sets with the additional property that between every two points is a third
("property D"; see [4 D.

Furthermore we show that it is possible to extend a T-space on T <;; IR to a
point in its domain provided the gap is a closed interval (a provision shown
by an example to be necessary). Using this we show that any T-space on a
domain with "property D" derives from a T-space on an open interval
through the restriction of the elements to a subset of that interval. In
particular Theorem 3 of Zielke [5), which states that any Markov space of
degree greater than zero on a set with "property D" is extendable to a
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Markov space of higher degree, now follows directly from the result of
Rutman [3], which states the same thing for Markov spaces on open
intervals.

A further consequence is derived from the above results: Given a real­
valued function u defined on a subset TS IR, t E IR has been called an
asymptotic zero of u if there exists a sequence (tn) S T such that tn-. t and
u(tn) -. 0 (see [2]). Let AZ(u) denote the number of distinct asymptotic zeros
of u in ]inf T, sup T[ which are not also actual zeros of u. It is shown
that, after multiplying each element by a single positive function, aT-space
U of degree k on an interval has the property: 0 *- u E U implies
Z(u) +AZ(u) <: k.

Throughout, it should be understood that left-biased results can be restated
as the corresponding right-biased results, even though this is not explicitly
stated. We use 1 to denote the function u: T -. IR satisfying u(t) = 1 for all
t E T; we define id: IR -. IR by id(t) = t for all t E T. If uo,... , Uk is a
Markov system on T then Uo is either strictly positive or strictly negative and
1, (ljuo) up... , (Ijuo) Uk is also a Markov system on T. If 1, u l , ... , Uk is a
Markov system on T (k> 0) then u I is strictly monotone and
I, id, Uz DUll,..., Uk 0 u l

l is also a Markov system on u l (T).
We recall the following Lemma:

4.1. LEMMA OF [1]. Suppose T c IR, card T> k and x I"'" x k E IR
satisfy XI < ... < X k < inf T. Then any T-space of degree k on {XI"'" xd U T
is a Markov space of degree k on T.

1.1. THEOREM. If an arbitrary linearly ordered set T is the domain of a
T-space of degree greater than zero, then T is order-isomorphic to a subset of
IR.

Proof Given aT-space U of degree k >0 on an arbitrary linerly ordered
set T, suppose that T has infinite cardinality and find X E T such that for
L == {t E Tit < x} and T+ == {t E Tit> x}, card T _ >k and card T + > k.
The restriction U IT + of the elements of U to T + is a Markov space by the
lemma above.

Thus there is a strictly monotone map a: T + -. IR with inf a(T+) > O.
Similarly, there is a strictly monotone map p: T_-. IR with sup peT_) < 0,
whence there is a strictly increasing map m: T -. IR.

Note. This cannot be inferred merely from the knowledge that
card T <: card IR, as there are linearly ordered sets of cardinality equal to
that of IR which cannot be mapped in an order-preserving way into IR: the
first uncountable ordinal, for example.
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The possibility of extending the domain of aT-space U to one of its
extreme points is related to the existence of T-subspaces in U.

2.1. LEMMA. AT-space U of degree k contains one of degree k - 1 if
and only if there is a T-space V of degree k on TU {x}, x> sup T, whose
restriction to T is U.

Proof Suppose V is a T-space of degree k on TU {x} such that
V IT = U. Consider the set U' of elements of V that vanish at x. Clearly for
any Ool=vEU' , Z(vIT)~k-l, since Z(v)~k. Furthermore
S-(v IT) ~ k - 1, since S+(v) ~ k. Hence U' IT is a T-space of degree k - 1
contained in U.

Conversely let Uo"'" Uk-l' Uk be a basis for U such that Uo,"" Uk- 1 is a T­
system. Let x> sup T, define viet) = ui(t) for t E T and let vi(x) = ()ik
(i = 0'00" k). It is easily verified that the space V spanned by vi' i = 0, 1,... , k
is a T-space on TU {x}.

2.2. LEMMA. Let T <:; IR with inf T, sup T E T, and U any T-space on T.
Then there exists a T-space Von TU {sup T} of the same degree as U such
that V coincides with U on T.

Proof Let k be the degree of U and let uo, U1'00" Uk be a basis for U.
Define ~(t) = 1/L:7=0 lui(t)l, t E T. ~ is well defined since all ui cannot
simultaneously vanish at any t E T (this follows from the nonvanishing of
the Haar determinant). Let tn ..... sup T be a sequence in T such that
ci = lim ~(tn) ui(tn) exists for i = 0,..., k. Since}; Icil = 1, at least one Cj 01= 0.
Clearly since ~(t) >0, U is a T-space iff {~ . U IU E: U} is a T-space. So we
can assume without loss of generality that ~(t) = 1. Furthermore we can
assume the u;'s to be such that Co > O. We will now prove that the required
T-space V is spanned by functions Vi defined for t E T by viet) = ui(t) and
satisfying vi(sup T) = Ci (i = 0,... , k).

First we show that S-(v) ~ k for each V E V. Suppose S-(v) > k for some
v E V. We may then assume that there exist points So < s. < ... < Sk in T
such that (_I)k- j v(Sj) <0 and v(sup T) >0, since v IT E U implies
S-(v IT) ~ k. Since v(sup T) = lim v(tn)' there exists some tn> Sk such that
V(ln) has the same sign as v(sup T). But this cannot be since S-(V IT) ~ k.
Therefore for each v E V, S-(v) ~ k.

Next we show Z(v) ~ k for 001= v E V. Suppose this is not so. Then there
exist v 01= 0 in V and points s. < S2 ... < Sk such that v(s;) = 0, i = 1,..., k and
v(sup T) = 0, since Z(v IT) ~ k. Let So <s. be an element of T (such an So
exists since inf T E T). Further from the nonvanishing of the Haar deter­
minant we may conclude that there exists UE U such that (_l)k-i u(Sj) > 0,

640/32/4-5
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i=a,I,...,k. Since S-(u)<,k, limu(tn)~O. If lim u(tn)=a, then by
choosing 11 >a sufficiently small, (_I)k-i(U + l1uo)(s;) >a and
lim(u(tn) + l1uo(tn» = I1Co > a. Thus, we may assume that lim u(tn) > a.
Furthermore, for some m, tm> Sk and either -v(tm) or v(tm) is positive. Since
Z(v) = Z(-v) we might as well assume V(tm) < a. Then there exists a p
sufficiently large such that (_I)k-i(u +pv IT)(s;) >a, i = 1,... , k and
(u +pv IT)(tm) < a. Since lim u(tn) >a and lim v(tn) = a, there exists tm, such
that tm< tm, < sup T and (u +pv IT)(tm') > a. Hence the sign of u + pv IT
alternates between each of the points S I , S2 , ... , Sk' tm' tm' . Therefore
S-(u +pv IT) > k, a contradiction.

2.3. THEOREM. If aT-space U on T ~ IR is not a Markov space then
either inf T E T or sup T E T.

Proof Suppose inf T, sup TE T. By (2.2), U can be extended to a T­
space on TU {sup T}. From (2.1) therefore there exists a subspace U' of U
that is a T-space of degree k - 1. We can now apply the same argument to
V' and so on, deriving a nested chain of T-spaces in V which implies V is
Markov. Hence the theorem follows.

2.4. COROLLARY. If V is a T-space on T ~ IR with inf T, sup T E T then
there is a u E V such that u(t) >afor t E T.

Even if inf T, sup T E T, it is possible to extend T-spaces to include points
belonging to certain kinds of "gaps" in T. This is made precise in the next
theorem. On the other hand, there are examples of "gaps" in T in which the
given T-space cannot be extended to even one point therein.

There are trivial examples of Markov spaces wherein the domain cannot
be extended to internal points when the domain is not closed. For example,
Uo = I, u(t) = t for t <, a and ul(t) = t - 1 for t> 1 form a Markov system
of continuous functions on IR\]O, 1] which cannot be extended to any point
of ]0, 1]. However, there are also examples of Markov spaces of continuous
functions on a closed set which cannot be extended to a continuum of
internal points. For example, let T= [a, n12] U [5nI2, 3n] and on T define
uo(t) = 1, u2(t) = sin t, u(t) = 1 + cos t if t <, nl2 and ul(t) = -1 + cos t
otherwise. It is not hard to see that uo, up U2 form a Markov system on T (if
U is their linear span, V 0 uII is an isomorphic space generated by 1, t and
U 2 0 u l

l
, and u2 0 u l

l is strictly increasing for t <, nl2 and strictly decreasing
thereafter); On the other hand, given x E ]n12, 5nl2 [, there are no values for
uo(x), u(x), u2(x) such that the corresponding extensions of the elements of
V form even a T-space on TU {x}. The demonstration of this involves a
geometric argument applied to the curve {(uo(t), ul(t), u2(t» \ t E T}, which is
laborious and hence omitted.
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2.5. LEMMA. Let X be aT-space offunctions defined on a subset T~ IR,
and suppose 1 E X. Then for each u E X and each s in the closure of T,
limITs u(t) (respectively, limlLs u(t)) exists or is infinite if s is an accumulation
point of T from the left (respectively, right).

Proof If lim u(t) < b < lim u(t) (as, say, tis) then S+(u - b· 1) = 00.

2.6. LEMMA. Let 1 = uo, u1 , ... , Uk be a Markov system defined on a
subset T c IR. Then for inf T <a <b < sup T, each of u1"'" Uk is bounded on
[a,blnT.

Proof Assume not. By (2.5) and the compactness of [a, b], it may be
assumed that for some s E )inf T, sup T[ and some n > 0 uo, U1''''' Un -I are
bounded in a neighborhood of s, but (say) limITs un(t) = 00. Let v * 0 be a
linear combination of uo,'''' un with n zeros to < ... < tn_ 1 < s, normalized so
that lim/is vet) = 00. Let u * 0 be a linear combination of uo,"" un- 1 with
zeros at to,"" tn- 2 and such that U(tn-I) > O. Let tn+1 E Tn ]s, +00 [ and
find a>O such that au(tn+I»V(tn+I). Find tnETn]tn_l'sl such that
au(tn) < v(tn)' Then to,"" tn+1 is a weak alternation sequence for v - au, so
S+(v - au) >n + 1, which contradicts that Uo,..., un generate aT-space.

Remark. Suppose U is a T-space on T c IR and 1 E U. Then for each
accumulation point s of T there are a, b E IR with a < s <b such that U
restricted to la, b) nTis a Markov space (containing 1). However, it is
possible that no Markov system generating that Markov space has 1 as its
first element in which case its elements need not be bounded in any
neighborhood of s. For example, uo(t) = t- 2

, ul(t) = t- 1
, u2(t) = 1 is a

Markov system on IR\{O}, unbounded in every neighborhood of O.

2.7. THEOREM. Suppose U is a T-space on T c IR and for some
xEjinfT,supT[, neither sup{tETlt<x} nor inf{tETlt>x} are
elements ofT. Then there is a T-space Von TU {x} whose restriction to Tis
U.

Proof Suppose the degree of U is k. The hypothesis is vacuous unless
there are a, bET such that a <x <b and A == Tn [a, b1is infinite but has
at least 2k fewer points than T. In this case the restriction U IA is a Markov
space by (4.1) of [1]. Thus there is a strictly positive p on A such that
1, u t , ... , Uk is a Markov system generating p . U IA' Let y = sup{t E TI t < x}.
By (2.5) and (2.6), for each u E U, lim/Typ(t) . u(t) exists. If x E T, extend
each u E U to 12 on TU {x} by defining u(x) = limILYP(t) . u(t). Notice that
if u(x) * 0 then for all t E T, t <y, t sufficiently close to y, the sign of u(x) is
the same as that of u(t) = u(t). Thus S-(u) ~ k. It remains to show that if
Z(u) = k then u(x) * 0 (whence for all 0 * u E U, max{S-(u), Z(u)f >k
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which proves that the set of extensions {u Iu E U} forms a T-space on
TU {x}).

Indeed, suppose both Z(u) = k and u(x) = O. Let us first assume that the k
zeros of u are to < t l < ... < tr < tr+4 < ... < tk+Z with x E ]tr, tr+4 [n T.
From the assumptions of the theorem there are infinitely many points of Tin
]t" x] and in lx, tr+4 [. Let sl' Sz E ]tr, x [n T such that ]tr, SI [n T,
ISl'sz[nT*,0. Since U is a T-space it follows from the nonvanishing of
the Haar determinant that there exists a v E U such that at the k + 1 points
to, t l , ... , t" SI' sz, tr+4 , ... , tk+l , v assumes the values:

(-ly+r v(t j )=-l, j=O, 1,2,... ,r,r+4,...,k+ 1,

V(SI) = v(sz) = O.

Then v(t) <0 on ]sz,tr+4[nT: if for some sE]sz,tr+4[nT, v(s)~O,

to,tp...,tr,sl'sZ,s,tr+4,... ,tk+1 forms a weak alternation sequence of length
k + 1 for v. Thus vex) ~ O. Since 1 E P . U lA' there exists an wE U such
that wet) < 0 for all tEA and w(x) <O. There exists an r, >0 such that

j = 0, 1, 2,..., r, r +4,... , k + 1.

Letj=v+r,w and pick points tr+IE ]t"x[nTand tr+3E lx, tr+4[n T.
Then to ,..., tr, tr+I' tr+3' tr+4 ,... , tk+z is a weak alternation sequence of length
k + 1 for u unless u(tr+J) U(tr+3) > 0, which thus must be the case. We may
consequently assume that u(t) >°for all tEl tr, tr+4 [. Hence there exists
p >°such that

j = 0, 1,... , r + 1, r + 3,..., k + 1

(since u(tj ) = 0 if j *' r + 1, r + 3). Since fix) < 0 while u(x) = 0 there exists
tr+ZE 1tr+l' tr+31n T such that j(tr+ z) +pu(tr+z) <O. Hence

j = 0, 1,..., k + 1,

i.e., S-(f+pu)~k+ 1, which cannot be sincej+puE U.
Finally, assume that all the zeros of u lie to one side of x. If k = °then

u IA = alp for some scalar a*,O and u(x) = a. Hence, assume k >0 and
to < t l < ... < tk- 1 are the zeros of u, with (say) tk_ 1 < x. Let
S E ] tk_1' x [n T. As above, there exists a v E U such that (-1 t~i v(tJ > 0,
i=0,...,k-1 and v(s»O. Since S+(v)~k, v(t»O for all
t E Is, sup T[ n T and thus vex) ~ O. As in the proof of (2.2), we may
assume that v(x»O. Let tk+IE]x,supT[nT. Since S+(u)~k,

u(t) u(tk+I) >0 for all t E ]tk_ l , tk+I [ n T. Replacing u by -u if necessary,
we may assume that u(tk+ I) > O. Let £5 > 0 be chosen such that
£5v(tk+I) < u(tk+I)' Then £5v(x) > 0 while u(x) = 0 and thus there exists a
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point tkE ]s,x[nT such that ov(td>u(tk). Thus (-I)k-i(ov-u)(t;) >0
for i = 0,... , k + 1 so S-(ov - u) > k, a contradiction.

Remark. The techniques used to prove (2.2) and (2.7) are
interchangeable, affording two distinct proofs of each result. (However, the
differences beween the two results in any case require that two distinct
proofs be given.)

3. CONTINUITY

Clearly, individual elements of a T-space can be terribly discontinuous:
for any T-space U of functions defined on T and any real-valued function ¢
satisfying ¢(t) >°for all t E T, ¢ . U == {¢(t) . u(t) Iu E U} is also aT-space.
If T c IR and the elements of U are continuous while ¢ is discontinuous, the
elements of the T-space ~ . U will inherit the discontinuities of ~.

On the other hand, if U is a T-space of functions on a subset T <;; IR,
continuous except for possibly a jump discontinuity at a common point x,
then for

61(t) = t - 1

=x

= t+ 1

if t < x

if t=x

if t > x

U 061- 1 == {u 0 61- 1
1 u E U} is a T-space on 61(T) whose elements are

continuous everywhere (the discontinuity having been isolated).
It is shown in this section that any T-space can be derived as above from

a T-space of functions continuous on the complement of a countable set, and
in fact whose only discontinuities are jumps. Specifically, this is stated as
follows.

3.1. THEOREM. Let U be a T-space of degree greater than zero, of real­
valued fuctions defined on a linearly ordered set T. Then there exists a
strictly monotone real-valued function 61 on T and a strictly positive real­
valued function r/J on IR such that the elements of the T-space r/J . U 0 61 - 1 ==
{r/J(t). u(61-I(t» Iu E U, t E 61(T)} are continuous real-valued functions on
61(T) <;; IR.

The two T-spaces U and ¢ . U 0 e -I are of the same degree and the
association u -+ ¢ . U 0 e - 1 is an isomorphism wherein the elements of each
associated pair have the same alternation properties. In particular,
Z(u) = Z(¢. u 0 61- 1

), S-(u) = S-(¢. u 0 61- 1
) and u(t) = 0 if and only if

¢(t) . u 0 61-I(61(t» = O.

The proof of (3.1) depends upon an additional lemma.

640/32/4-6
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3.2. LEMMA. Let 1, id, U2 ' ... , Uk be a Markov system defined on a subset
of IR. Then each of U2 , ... , Uk is continuous (except perhaps at one or both
extreme points of the domain, if they exist).

Proof By induction on k. If k = 1 then the lemma is vacuous. Now
suppose uo(t) = 1, ul(t) = t, u2(t), ... , uk(t) is a T-system on a set T';;; IR with
Uo,... , Uk-I continuous. Let sET be a non-extreme point of T and assume Uk
is discontinuous at s. Suppose s is an accumulation point of T from the right.
Then by (2.5), limtls uk(t) exists or is infinite. Suppose uk(s) < lim t ls uk(t).
Let s = t l < t} < t4 < ... < tk+ 1 be points in T and find a o"'" ak_1 such that
U= 'L.7;:d aiu; satisfies u(t;) = uk(t;) for i = 1,3,4,... , k + 1 (see [1, (1.2)]).
By the continuity of u, there exists t2 E ]t I' t} [ II T such that u(t2) < Uk(t 2).

If for some to E T with to < tl , u(to) ~ Uk (to), then to < t l < t2 < ... < tk+ I is
weak alternation sequence for u - Uk of length k + 1, which is impossible.
Thus for all t < t l , u(t) > uk(t). Let to E T with to < I be chosen and find
bo,... , bk_1 such that v = 'L.7;:d b; U; satisfies vet;) = uk(t;) for
i = 0, 1,4,..., k + 1. Note that v(to) = uk(to) < u(to)' If v(t}) ~ u(t}) then
to < t l < t} < t4 < ... < tk+ 1 is a weak alternation sequence for u - v of
length k, which is impossible. Hence vet}) > u(t}) = uk(t}). However, by the
continuity of v, there exists t* E ]t l , t}l II T such that v(t*) < uk(t*). Thus
to < t l < t* < t} < ... < tk+ 1 is a weak alternation sequence for v - Uk of
length k + 1, also impossible. It follows that Uk must be right continuous at
s. Similarly it follows that Uk must be left continuous at s.

Proof of (3.1). By (1.1) it may be assumed that T c IR. If T is finite,
there is nothing left to prove. Hence, assume T is infinite. Suppose the degree
of U is k. By (2.3) and [1, (4.1)] there are a, b E IR such that for
A = 1a, b [ II T, U IA is a Markov space of degree k and 1\A contains at most
2k elements: if there are at least k isolated points at one end of T, (4.1) of
[1] applies; otherwise, after removing fewer than k points each end of T,
both the infimum and supremum of what is left are accumulation points and
upon their removal (2.3) applies.

Suppose Uo,... , Uk is a Markov system for U IA' The Markov space
V == (1 /uo) . U IA on A is generated by a Markov system of the form
1, V 1"'" vk and the Markov space W== Voui 1 on ul(A) is generated by a
Markov system of the form 1, id, W 2 , ... , Wk' Each element of such a Markov
space W must be continuous by (3.2). The map u l : A ~ IR admits a strictly
monotonic extension €l: T ~ IR. Thus, for any strictly positive extension
~ . U 0 €l- I is a T-space of continuous functions on €l(T) with the desired
properties.

Remark. The effect of the map €l is simply to "scale" the argument t E T
and to create gaps in the domain; it has no effect on the alternation
properties of the elements of U. On the other hand, these gaps are essential
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to the continuity argument. For example, let e(t) = t if t ~ 0 and let
e(t) = t + 1 if t> O. While the linear span U of 1, e is a Markov space on
IR, e has a discontinuity. However, while 1, t E U 0 e- 1 (and thus the
elements of U 0 e- 1 are continuous) the gap 10, 1I appears in the domain.
Rectifying the discontinuity in e via multiplication by a e would destroy the
continuity of 1 and there can be no reconciliation of the gap and continuity.
Thus, for example, it is false that every T-space (or even Markov space) on
an open interval is equivalent to a T-space of continuous functions on an
open interval.

We will say that a set S ~ IR is pre-closed if for each x E linf S, sup Sf,
sup{t E Sit < x} = inf{t E Sit> x} except perhaps when both are elements
of S. We will say S is relatively closed if S\{inf S, sup S} is relatively closed
in Iinf S, sup S [. A relatively closed set is pre-closed.

3.3. COROLLARY. Given aT-space U on a linearly ordered set T, there
exists a T-space V on a relatively closed subset S c IR such that for some
strictly increasing e: T -> S the restriction V IBm is equivalent to U, i.e.,
V IBm = U 0 e - 1. In particular, if T has "property D" then S will be an
open interval.

Proof By (1.1), U is isomorphic to a T-space on a subset A c IR and, by
applying a strictly increasing transformation to A, it may be assumed that A
is pre-closed. Applications of (2.7) show that the equivalent T-space on A
may be extended to a T-space V on the closure of A in IinfA, sup A [. A pre­
closed subset of IR with "property D" is a dense subset of an open interval.

3.4. COROLLARY (Zielke). Let U be a T-space ofdegree k >0 on a set T
with "property D." Then U is a Markov space and there exists an infinite
chain of Markov spaces Uc Uk + 1 c Uk +2 c· .. on T.

Proof By (2.3), U is Markov. By (3.5), there is a real open interval S, a
strictly increasing e: T -> S, and a Markov space V on S such that
V IB(T) = U 0 e- 1

• By Theorem 3 of [3 I, there is an infinite chain of Markov
spaces V c Vk + 1 C Vk+ 2 C ... on S. Setting Ui = Vi 0 e completes the proof.

4. ASYMPTOTIC ZEROS

For the definitions of "asymptotic zero" and AZ(u), the number of
asymptotic zeros of a function u, see Section 1. Let U be a T-space of
functions defined on a real interval. If 1 E U and ¢ is strictly positive then
¢ E ¢ . U =- {¢ . u I u E U} and AZ(¢) can be arbitrarily large. On the other
hand, if the elements of U are continuous, and u E U has a zero at x, define
e(t) = t - 1 when t < x, e(x) = x and e(t) = t + 1 when t> x. Then
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u 0 e- I is an equivalent T-space of continuous functions and the image
u 0 e- I of u in U 0 e- I not only has a zero at x but has additional
asymptotic zeros at x - 1 and x + 1. Thus it is possible that
Z(u) +AZ(u) = 3k even when u is a continuous nonzero element of a T­
space of degree k. However, the next result shows that typically these
irregularities can be avoided.

4.1. COROLLARY. Given aT-space U of degree k on a set Tr::;;. IR having
no one-sided accumulation points in ]inf T, sup T[ n IR, there is a strictly
positive function p on T such that for 0 *- u E P . U, Z(u) +AZ(u) ~ k.

Proof As in the proof of (3.1), there are a, b E IR such that for
A = 1a, b [ n T, U IA is a Markov space, and T\A contains at most 2k
elements. Thus, for some strictly positive p defined on A, p . U IA admits of a
Markov system basis of the form 1 = Uo,..., Uk' Extend p to be 1 on T\A.

Let x E ]inf T, sup T[ be an asymptotic zero of 0 *- u Ep . U. Then the
restriction of p. U to 1\{x} is a T-space which, as in the proof of (2.7), may
be extended to a T-space on T in such a way that the newly extended u
satisfies u(x) = O. In this way asymptotic zeros can be exchanged for actual
zeros and the result follows.
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